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Abstract

In this paper we develop enhanced edge detectors based on existing
local edge detectors and a threshold function composed of the sigmoidal
transformation. It is proved that the proposed edge detectors can elim-
inate inevitable oscillations of the original edge detectors near jump
discontinuities and improve the resolution far from the discontinuities.
Furthermore, we suggest a scheme for applying the proposed method to
the two dimensional discrete data. We include some examples to show
that the numerical results are consistent with the theoretical analysis of
the proposed edge detectors.
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1 Introduction

Accurate edge detection is essential, for example, in image processing and
pattern recognition because the most significant information is often observed
near the edges which are identified by jump discontinuities in a given data.
Until now many edge detection methods have been introduced in the literature
[1–4,6–14] which are classified two categories, the gradient based methods and
the zero-crossing based methods, in general.
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In practice, jump discontinuities occur at every grid point in given discrete
data, and thus determining existence of the jump discontinuities which is iden-
tified with the edges is not a simple problem. Gelb and Tadmor [6–9] proposed
a family of edge detectors accompanying concentration factors near the jump
discontinuities of the discrete data. Convergence rate of higher order edge
detectors is faster than lower ones away from jump discontinuities while the
higher order ones generate annoying oscillations near the discontinuities. In
addition, the edge detection method requires an outside threshold parameter
which indicates the minimal magnitude below which jump discontinuities are
neglected. Recently, in order to resolve the aforementioned problems of the
existing edge detectors the author provided an adaptive edge detection method
based on a nonlinear transformation in [15].

In this paper, extending the idea in the literature [15], we aim to develop
an enhanced edge detection method for removing the unwanted oscillations
near the jump discontinuities and improving resolution away from the discon-
tinuities. In Section 2, for understanding of the motivations of the present
work, Gelb and Tadmor’s local edge detectors and sigmoidal transformations
are introduced. In Section 3 we propose simple form of threshold functions as-
sociated with the sigmoidal transformation. Then the edge detectors and the
proposed threshold function are combined to pinpoint significant edges of the
given data as well as improve convergence far from the edges. Furthermore, the
application to two dimensional data is given in Section 4. Numerical examples
are included to demonstrate efficiency of the presented method.

2 Preliminaries

In this section we recall the edge detectors proposed by Gelb and Tadmor [6–9]
and the sigmoidal transformations. For a (b − a) periodic piecewise smooth
function f(x), a ≤ x < b, we define a jump function [f ](x) := f(x+)− f(x−),
where f(x±) indicate the right and left side limits of f(x) at x. Let the data,
fk = f(xk) are given for 2N + 1 points xk = a + h · k (k = 0, 1, · · · , 2N)
with h = (b − a)/(2N + 1). A point ξ such that [f ](ξ) 6= 0 is called a jump
discontinuity which we wish to identify. Edges of piecewise smooth data can
be identified by jump discontinuities in the data.

In the literature [9] local edge detectors based on the difference formula
were introduced as

g2p+1,h(x) :=

(
2p

p

)−1
∆2p+1fj , xj ≤ x < xj+1 (1)

for each j, where ∆2p+1fj indicates the difference formula of order 2p+1 for an
integer p ≥ 0. The local edge detector g2p+1,h(x) has a concentration property



Enhanced edge detection method based on a threshold function 2883

for a jump discontinuity ξ as follows.

g2p+1,h(x) =

(−1)l
Ql,p

Q0,p
[f ](ξ) + O (h) , if xj−l ≤ ξ < xj+1−l , |l| ≤ p

O (h2p+1) , otherwise

(2)
as h → 0, where Ql,p =

(
2p
p+|l|

)
. This formula implies that the oscillatory

behavior of g2p+1,h(x) near the discontinuity ξ is increasing as p grows.
In addition, we introduce a sigmoidal transformation γm(t), 0 ≤ t ≤ 1, of

order m which has the so-called clustering property:

γm(t) =

O (tm) , t < 1
2

1 + O ((1− t)m) , t > 1
2

(3)

as m goes to the infinity. Definitions, classification with examples and general
properties of the sigmoidal transformations are summarized in the literature
[5]. On the other hand, as a particular type of the sigmoidal transformation,
we recall the following sigmoidal transformation of infinity order.

γ∞(t) =
1

2
+

1

2
tanh

[
r

4

(
1

1− t
− 1

t

)]
(4)

with r >
√

3, which satisfies an additional property as

γ(j)∞ (0) = γ(j)∞ (1) = 0 (5)

for all integers j ≥ 1. In the numerical implementation later, to avoid the am-
biguity of choosing the order m of γm(t) we employ the infinity order sigmoidal
transformation γ∞(t).

3 Construction of enhanced edge detectors

In order to improve the performance of the existing local edge detectors g2p+1,h(x)
in (1), referring to the literature [15], we define a function as follows: For an
integer p ≥ 0,

θ2p+1(x) =
|g2p+1,h(x)|

|g2p+1,h(x)|+ β2p+1 {|g2p+1,h(x− h)|+ |g2p+1,h(x+ h)|}+ δ2p+1

(6)
with the parameters β2p+1 > 0 and δ2p+1 > 0. We call θ2p+1(x) a threshold
function of order 2p + 1. A range of the parameter β2p+1 for each p ≥ 1
is determined by the concentration property of g2p+1,h(x) and the clustering
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property of γm(x) as shown below while β1 may be selected arbitrarily. Then
we propose a local edge detector of order 2p+ 1 based on θ2p+1(x) as

G
[m]
2p+1,h(x) = g2p+1,h(x)γm (θ2p+1(x)) , xj ≤ x < xj+1, (7)

where γm is the sigmoidal transformation of order m introduced in the previous
section.

For practical purpose, from now on, we will explore the cases of p = 0,
1, 2 successively. First, we consider the simplest local edge detector g1,h(x) =
fj+1−fj, xj ≤ x < xj+1, for each j = 0, 1, · · · , 2N and the first order threshold
function

θ1(x) =
|g1,h(x)|

|g1,h(x)|+ β1 {|g1,h(x− h)|+ |g1,h(x+ h)|}+ δ1
. (8)

From (2) we have a so-called concentration property

g1,h(x) =

[f ](ξ) + O(h) , if ξ ∈ [xj, xj+1)

O(h) , otherwise
(9)

as h → 0 (or N → ∞). Suppose that ξ ∈ [xj, xj+1). Then the property (9)
results in

θ1(x) =
|[f ](ξ)|

|[f ](ξ)|+ δ1
, xj ≤ x < xj+1

for sufficiently small h > 0, and thus

θ1(x) ≷
1

2
, if |[f ](ξ)| ≷ δ1. (10)

On the other hand, when ξ 6∈ [xj, xj+1),

θ1(x) = O(h). (11)

From the definition of G
[m]
1,h(x) in (7) and the clustering property of γm(x) in

(3) it follows that for xj ≤ x < xj+1

G
[m]
1,h(x) =


[f ](ξ) +O ((1− θ1(x))m) , if ξ ∈ [xj, xj+1) and |[f ](ξ)| > δ1

O(θ1(x)m) , if ξ ∈ [xj, xj+1) and |[f ](ξ)| < δ1

O(hm+1) , otherwise

(12)
as h→ 0. Comparing this result with the asymptotic behavior in (9), one can
observe the followings:
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(a) When ξ ∈ [xj, xj+1) and |[f ](ξ)| > δ1, convergence rate of G
[m]
1,h(x) to

[f ](ξ) becomes higher as the amplitude of the discontinuity, [f ](ξ) is
larger.

(b) Every jump discontinuity, with an amplitude below the threshold param-

eter δ1, vanishes by G
[m]
1,h(x) such as O(θ1(x)m).

(c) For sufficiently large m, G
[m]
1,h(x) will improve convergence rate of g1,h(x)

away from the jump discontinuity. Therefore it can be used to enhance
separation of the jump discontinuity from smooth regions, which gener-
ates higher resolution in the practical edge detection.

(d) All the remarks (a), (b) and (c) hold regardless of the value of the pa-
rameter β1.

For higher order local edge detectors we consider the third and fifth order
difference formulas as

g3,h(x) =
1

2
{−fj−1 + 3fj − 3fj+1 + fj+2} (13)

and

g5,h(x) =
1

6
{−fj−2 + 5fj−1 − 10fj + 10fj+1 − 5fj+2 + fj+3} (14)

for all xj ≤ x < xj+1, j = 0, 1, · · · , 2N . The concentration property in (2)
implies

g3,h(x) =


[f ](ξ) + O(h) , if ξ ∈ [xj, xj+1)

−1
2
[f ](ξ) + O(h) , if ξ ∈ [xj−1, xj) ∪ [xj+1, xj+2)

O(h3) , otherwise

(15)

and

g5,h(x) =



[f ](ξ) + O(h) , if ξ ∈ [xj, xj+1)

−2
3
[f ](ξ) + O(h) , if ξ ∈ [xj−1, xj) ∪ [xj+1, xj+2)

1
6
[f ](ξ) + O(h) , if ξ ∈ [xj−2, xj−1) ∪ [xj+2, xj+3)

O(h5) , otherwise.

(16)

When a jump discontinuity ξ is included in [xj, xj+1), the concentration prop-
erty of the edge detectors g3,h(x) and g5,h(x) for intermediate points τk =
(xk + xk+1)/2, k = j, j ± 1, j ± 2, j ± 3, are depicted in Fig 1. Therein, the
heights indicate normalized values, gq,h(ξ)/[f ](ξ) for each q = 3, 5. It should
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(a) g3,h(x) (b) g5,h(x)

Fig. 1. Concentration property of the edge detectors g3,h(x) and g5,h(x) when a
jump discontinuity ξ ∈ [xj , xj+1) for intermediate points τk = (xk + xk+1)/2,

k = j, j ± 1, j ± 2, j ± 3.

be noted that the higher order edge detectors lead to faster convergence than
the first order edge detector away from the the jump discontinuity while they
generate oscillations near the discontinuity. Thus, in this case we aim to de-
velop enhanced edge detectors which eliminate the oscillations produced by
g3,h(x) and g5,h(x) near the jump discontinuities as well as further improve
convergence far away.

Similarly to the case of g1,h(x), for m assumed to be large enough we define
new higher order local edge detectors as follows.

G
[m]
q,h (x) := gq,h(x)γm (θq(x)) , (17)

where q = 3 or 5. The function θq(x) is defined as

θq(x) =
|gq,h(x)|

|gq,h(x)|+ βq {|gq,h(x− h)|+ |gq,h(x+ h)|}+ δq
, (18)

where δq > 0 is a given small number and βq > 0 is a parameter to be deter-
mined. Referring to the clustering property of the sigmoidal transformation
γm(t), we suggest the following conditions in order that G

[m]
q,h (x) in (17) elim-

inates the oscillations of gq,h(x) near the jump discontinuity and improves
convergence away from the discontinuity.

θq(x) >
1

2
, if ξ ∈ [xj, xj+1) (19)

and

θq(x) <
1

2
, if ξ 6∈ [xj, xj+1) (20)
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for all xj ≤ x < xj+1. We assume that h is sufficiently small. Then for the
case of q = 3 the concentration property in (15) and the conditions (19) and
(20) imply that

θ3(x) =
1

1 + β3 + δ′
>

1

2

if ξ ∈ [xj, xj+1), and

θ3(x) =
1

1 + 2β3 + 2δ′
<

1

2

if ξ ∈ [xj−1, xj) ∪ [xj+1, xj+2), in which δ′ = δ3/|[f ](ξ)| with a small δ3 > 0.
Thus we have the range of the parameter β3 as follows.

1

2
− δ′ < β3 < 1− δ′. (21)

It should be noted that the parameter δ3(and δ5) in (18) exists only to prevent
the denominator vanishing while δ1 in (8) plays a role of a threshold of a jump
discontinuity.

For the case of q = 5 the concentration property in (16) and the conditions
(19) and (20) imply that

θ5(x) =
1

1 + 4
3
β5 + δ′

>
1

2

if ξ ∈ [xj, xj+1),

θ5(x) =
2
3

2
3

+ 7
6
β5 + δ′

<
1

2

if ξ ∈ [xj−1, xj) ∪ [xj+1, xj+2), and

θ5(x) =
1
6

1
6

+ 2
3
β5 + δ′

<
1

2

if ξ ∈ [xj−2, xj−1) ∪ [xj+2, xj+3). Thus for δ′ = δ5/|[f ](ξ)| with a small δ5 > 0
we have

4

7

(
1− 3

2
δ′
)
< β5 <

3

4
(1− δ′) . (22)

From the definition of G
[m]
q,h (x) in (17) and the clustering property (3) of

γm(x) we can see that the proposed edge detectors G
[m]
3,h(x) with β3 in (21)

and G
[m]
5,h(x) with β5 in (22) have the following asymptotic equations: For

xj ≤ x < xj+1

G
[m]
3,h(x) =


[f ](ξ) + O((1− θ3(x))m) , if ξ ∈ [xj, xj+1)

O(θ3(x)m) , if ξ ∈ [xj−1, xj) ∪ [xj+1, xj+2)

O(h3+3m) , otherwise

(23)
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and

G
[m]
5,h(x) =


[f ](ξ) + O((1− θ5(x))m) , if ξ ∈ [xj, xj+1)

O(θ5(x)m) , if ξ ∈ [xj−2, xj) ∪ [xj+1, xj+3)

O(h5+5m) , otherwise

(24)

as h → 0. The results in (23) and (24) indicate that G
[m]
q,h (x) with m large

enough can diminish the oscillations near the jump discontinuity as well as
highly improve the rate of convergence away from the discontinuity. In other
words, separation of the neighborhood of the jump discontinuity ξ from the
smooth regions can be sufficiently enhanced by G

[m]
q,h (x). On the other hand,

unlike the case of the first order edge detector G
[m]
1,h(x), the parameter δq in

(18) does not play a role of the threshold because the conditions in (19) and
(20) are satisfied regardless of the value of the magnitude [f ](ξ) of the jump
discontinuity.

In order to avoid the problem of choosing an appropriate order m of the
sigmoidal transformation, we may employ the infinite order sigmoidal trans-
formation γ∞(x) instead of γm(x) in (7). This results in the local edge detector
of infinite order

G
[∞]
2p+1,h(x) = g2p+1,h(x)γ∞ (θ2p+1(x)) (25)

For numerical experiment we take the following example used in the liter-
ature [9, 15].

f1(x) =


sin7(x+ π), −π ≤ x < −π

2(x
π

)3
− sin

(
9x
2

)
+ 1, −π

2
< x < π

2

sin7(x− π), π
2
< x < π

(26)

which has jump discontinuities at x = ±π
2
.

Fig. 2 shows that the presented edge detector G
[∞]
3,h (x) with N = 50 en-

hances separation of the jump discontinuities from smooth regions. Moreover,
log errors of g3,h(x) and G

[∞]
3,h (x) for the jump function [f ](x) are illustrated,

which implies that G
[∞]
3,h (x) converges faster away from the discontinuities. In

Fig. 2(b) the log error of g3,h(x) indicated by dotted line is included for com-

parison with that of G
[∞]
3,h (x). Therein, we have taken β3 = 0.75 and δ3 = 10−6

in (18). The result is consistent with the asymptotic behavior (23) of G
[m]
3,h(x)

with m large enough.
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(a) g3,h(x) (b) G
[∞]
3,h (x)

Fig. 2. Graphs of the third order edge detector g3,h(x) and its log error (in (a))

compared with those of the presented edge detector G
[∞]
3,h (x) (in (b)) for the two

dimensional data of f(x) = f1(x) with N = 50.

4 Applications to two dimensional data

For simplicity we suppose that two dimensional data fi,j = f(xi, yj) are given
at the grid points (xi, yj) in a rectangular region [a, b) × [c, d), where xi =
a+h1 ·i (i = 0, 1, · · · , 2N) with h1 = b−a

2N+1
and yj = c+h2 ·j (j = 0, 1, · · · , 2M)

with h2 = d−c
2M+1

. In this case we define two dimensional local edge detector as

G
[∞]
q,h (x, y) := G

[∞]
q,h1

(x) + G
[∞]
q,h2

(y), (27)

for xi ≤ x < xi+1 and yj ≤ y < yj+1. Furthermore, we transform the range of
the detectors onto the interval [0, 1] as follows.

G̃
[∞]
q,h (x, y) :=

G
[∞]
q,h (x, y)−min

i,j

{
G

[∞]
q,h (xi, yj)

}
max
i,j

{
G

[∞]
q,h (xi, yj)

}
−min

i,j

{
G

[∞]
q,h (xi, yj)

} . (28)

Similarly, we set gq,h(x, y) as

gq,h(x, y) := gq,h1(x) + gq,h2(y) (29)
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(a) g̃5,h(x, y) (b) G̃
[∞]
5,h (x, y)

Fig. 3. Contour plots of the edge detectors g̃5,h(x, y) and G̃
[∞]
5,h (x, y) for the two

dimensional data of f(x, y) = f2(x, y) with N = M = 120.

where, for example, for q = 5

g5,h1(x) =
1

6
{−fi−2,j + 5fi−1,j − 10fi,j + 10fi+1,j − 5fi+2,j + fi+3,j}

and

g5,h2(y) =
1

6
{−fi,j−2 + 5fi,j−1 − 10fi,j + 10fi,j+1 − 5fi,j+2 + fi,j+3} .

In addition, we set the transformed edge detector g̃q,h(x, y) like G̃
[∞]
q,h (x, y) in

(28).
For numerical experiment we take the following example given in [8].

f2(x, y) =

3 cos
(
xy
π

)
− sin

(
x
2

)
− sin

(
y
2

)
, if x2 + y2 < (0.7π)2

0 , otherwise
(30)

on the region −π ≤ x < π, −π ≤ y < π. For the data of f2(x, y) with N =
M = 120, Fig. 3 compares contour plots of the edge detectors g̃5,h(x, y) and

G̃
[∞]
5,h (x, y) with β5 = 0.7 and δ5 = 10−6 in (18). One can see that the presented

edge detector G̃
[∞]
5,h (x, y) provides clearer edges of f2(x, y) than g̃5,h(x, y).

Additionally, we consider an example of a 223 × 227 jpeg image shown in
Fig. 4. The contour plots of the existing local edge detector g̃5,h(x, y) and

the presented detector G̃
[∞]
5,h (x, y) with β5 = 0.7 and δ = 10−6 are given in

Fig. 5. The result of g̃5,h(x, y) reveals unclear edges as well as some unwanted

noises while G̃
[∞]
5,h (x, y) shows highly improved resolution. The reason of the
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Fig. 4. An example of a 223× 227 jpeg image.

(a) g̃5,h(x, y) (b) G̃
[∞]
5,h (x, y)

Fig. 5. Contour plots of the edge detectors g̃5,h(x, y) and G̃
[∞]
5,h (x, y) for the image

in Fig. 4.

resolution enhancement is that lots of the spurious oscillations of g5,h(x, y)

near the edges are removed by G
[∞]
5,h (x, y) as illustrated in Fig. 6, where the

graphs of g5,h(x, y) and G
[∞]
5,h (x, y) at the central cross section (x, ȳ) = (x, 113)

are compared.
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(a) g5,h(x, y) (b) G
[∞]
5,h (x, y)

Fig. 6. Graphs of the edge detectors g5,h(x, y) and G
[∞]
5,h (x, y) with β5 = 0.7 at the

central cross section (x, ȳ) = (x, 113), 1 ≤ x ≤ 223, of the image in Fig. 4.
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